• / 29
  • 下载费用:30 金币  

【精品文档】66大学本科毕业论文自动化专业毕业设计:智能金属探测器设计(完整版)

关 键 词:
【精品文档】66大学本科毕业论文自动化专业毕业设计智能金属探测器设计完整版
资源描述:
全文共12479字。本科生毕业设计智能金属探测器设计Design of intelligent metal detector学 生 姓 名专 业学 号指 导 教 师学 院毕业设计(论文)原创承诺书1.本人承诺:所呈交的毕业设计(论文)《智能金属探测器设计》,是认真学习理解学校的本科毕业设计(论文)工作条例后,在教师的指导下,保质保量独立地完成了任务书中规定的内容,不弄虚作假,不抄袭别人的工作内容。2.本人在毕业设计(论文)中引用他人的观点和研究成果,均在文中加以注释或以参考文献形式列出,对本文的研究工作做出重要贡献的个人和集体均已在文中注明。3.在毕业设计(论文)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。4.本人完全了解学校关于保存、使用毕业设计(论文)的规定,即:按照学校要求提交论文和相关材料的印刷本和电子版本;同意学校保留毕业设计(论文)的复印件和电子版本,允许被查阅和借阅;学校可以采用影印、缩印或其他复制手段保存毕业设计(论文),可以公布其中的全部或部分内容。以上承诺的法律结果将完全由本人承担!作者签名: 年 月 日摘 要本文介绍了一种基于AT89S52单片机控制的智能型金属探测器,重点研究了它的硬件组成、软件设计、工作原理及主要功能。该金属探测器以AT89S52单片机为核心,采用线性霍尔元件UGN3503作为传感器,根据电磁感应原理在金属内部产生涡流,涡流产生的磁场反过来又影响原磁场,这种变化可以转换为电压幅值的变化,单片机测得电压值,并与设定的电压基准值相比较后,决定是否探测到金属。在硬件设计中,把液晶显示,键盘和AT89S52组成外围数据进行处理并与显示模块结合对前端探测到的数据进行再处理和分析,将结果显示在液晶屏幕上,并可以通过键盘对前端的探测进度进行设置。在软件设计中,采用了数字滤波技术消除干扰,提高了探测器的抗干扰能力,确保了系统的准确性。关键词: 单片机 金属探测器 线性霍尔元件 电磁感应 ABSTRCTThis paper introduces an intelligent metal detector based on the control of AT89S52 single chip microcomputer. The metal detector AT89S52 single chip microcomputer as the core, using the linear hall element UGN3503 as sensor, according to the principle of electromagnetic induction in the eddy current is generated in metal eddy current magnetic field, in turn, affect the original magnetic field, the change can be converted to the change of the voltage amplitude, SCM measured voltage value,and compared with the benchmark set by the voltage,decide whether to detect metal. In the hardware design of the liquid crystal display, keyboard and AT89S52 peripheral data processing and display module combination of front-end detected data processing and analysis,and the results displayed in the LCD screen,and can be set through the keyboard of the front-end detection progress. In the software design, digital filtering technology is adopted to eliminate the interference,improve the anti-interference ability of the detector,and ensure the accuracy of the system.Keykords: Single-Chip;Microcomputermetal detectorlinear;hall-effect sensor;electric-magnetic 目录摘 要IIIABSTRCTV第1章 绪论11.1本课题研究目的、意义11.2国内外研究现状.1第2章 系统的总体设计32.1系统设计的理论依据32.1.1线圈介质条件的变化32.1.2涡流效应42.2 基于单片机的金属探测器的设计方案42.3系统结构6第3章 硬件电路设计73.1系统组成框图73.2线圈振荡电路83.3数据采集电路93.4 A/D转换电路113.5系统控制单元123.6键盘控制电路133.7显示报警电路143.8电源电路15第4章 系统软件设计164.1软件算法164.2主程序流程图174.3键盘控制程序设计184.4数字滤波程序设计19结 论21参考文献22致 谢23附 录1 电路原理图24VI第1章 绪论1.1本课题研究目的、意义金属探测器作为一种最重要的安全检查设备,己被广泛地应用于社会生活和工业生产的诸多领域。比如在机场、大型运动会(如奥运会)、展览会等都用金属探测器来对过往人员进行安全检测,以排查行李、包裹及人体夹带的刀具、枪支、弹药等伤害性违禁金属物品;工业部门(包括手表、眼镜、金银首饰、电子等生产含有金属产品的工厂)也使用金属探测器对出入人员进行检测,以防止贵重金属材料的丢失;目前,就连考试也开始启用金属探测器来防止考生利用手机等工具进行作弊。由此可见,金属探测器对工业生产及人身安全起着重要的作用。而为了能够准确判定金属物品藏匿的位置,就需要金属探测器具有较高的检测精度。目前,国外虽然已有较为完善的系列产品(如EIPaso、CeiaUSA、Ranger&Metoerx等厂商的产品),但价格极其昂贵;国内传统的金属探测器则是利用模拟电路进行检测和控制的,其电路复杂,探测灵敏度低,且整个系统易受外界环境如温度、湿度、电焊等诸因素的干扰。本文介绍的基于单片机控制的智能金属探测器,采用灵敏度极高的线性霍尔元件作为传感器,感应由于金属出现引起的探测线圈周围磁场的变化,提高了检测精度;处理部件则采用AT89S52单片机作为检测和控制核心,对检测结果进行分析判断,有效地保证了检测原理的实施;此外,利用软件滤波的方法代替了传统探测器复杂的模拟电路器件,大大提高了系统的可靠性、灵敏度和抗干扰性。适用于对邮件、行李、包裹及人体夹带的伤害性金属物品(如:刀具、枪械、武器部件、弹药和金属包装的炸药等)的检测,可用于海关、机场、车站、码头的安全检查。也可用于探测隐藏于墙内、护墙板内侧、空洞和土壤中的上述物品和其他金属物。1.2国内外研究现状.金属探测器因其功能和市场应用领域的不同,分为以下几种:通道式金属探测器(又称:金属探测门;简称:安检门)、手持式金属探测器、便携式金属探测器、台式金属探测器、工业用金属探测器和水下金属探测器。全球第一台金属探测器诞生于1960年,步入工业时代最初的金属探测器也主要应用于工矿业,是检查矿产纯度、提高效益的得力帮手。随着社会的发展,犯罪案件的上升,1970年金属探测器被引入一个新的应用领域———安全检查,也就是今天我们所使用的金属探测门雏形,它的出现意味着人类对安全的认知已步入一个新纪元。一个产品的出现带动了一个行业的发展,于是安检这个既陌生又熟悉的行业开始进入市场。40多年过去了,金属探测器经历了几代探测技术的变革,从最初的信号模拟技术到连续波技术直到今天所使用的数字脉冲技术,金属探测器简单的磁场切割原理被引入多种科学技成果。无论是分辨率、探测精确度还是工作性能上都有了质的飞跃。应用领域也随着产品质量的提高延伸到了多个行业。70年代随着航空业迅速发展,劫机和危险事件的发生使航空及机场安全逐渐受到重视,于是在机场众多设备中金属探测门扮演着排查违禁物品的重要角色。由于金属探测门在机场安检中的崭露头角,大型运动会(如奥运会)展览会及政府重要部门的安全保卫工作中开始启用金属探测门作为必不可少的安检仪器。发展到80年代,监狱暴力案件呈直线上升趋势,如何及早有效预防并阻止暴力案件发生成了监狱管理工作中的重中之重,在依靠警员对囚犯加强管理的同时,金属探测门再次成为了美国、英国、比利时等发达国家监狱管理机构必备的安检设备,形成平均每300个囚犯便使用一台金属探测门用于安检;与此同时西方兴起的“寻宝热”,也使手持式、便携式金属探测器得到长足的发展。进入90年代,迅速升温的电子制造业成了这个时代的宠儿,大型的电子公司为了减少产品流失、结束员工与公司之间的尴尬局面,陆续采用金属探测门和手持式金属探测器作为管理员工行为、减少产品流失的利刃。于是金属探测器又有了它新的角色———产品防盗。“9.11”事件发生后反恐成为国际社会的一个重要的议题。爆炸案、恐怖活动的猖獗使恐怖分子成了各国安全部门重点打击的对象。此时国际社会“安全防范”的认识也提高到了一个新的高度,受“9.11”事件的影响各行各业加强了保安工作的部署,金属探测器也成功渗透到公共娱乐场所等行业。然而此时简单的通道式金属探测门已不能完全满足安检要求,安检人员需要的是一种能准确判定物品藏匿位置的安检产品。于是多区位金属探测技术孕育而生,它的诞生是金属探测器历史上又一次变革,原来单一的磁场分布变成了现在互相叠加而又相对独立的多个磁场,在根据人体工程学把人体分为多个区段使之与人体相对应,相应的区段在金属探测门上形成相对的区域,这样金属探测门便拥有了报警定位功能。又根据国务院发布《单位内部治安保卫条例》,监考人员在高考考又根据国务院发布《单位内部治安保卫条例》,监考人员在高考考场里使用金属探测器符合相关规定,它将作为一项常规措施载入我国考试监考制度中金属探测器自诞生至今40多年过去了,金属探测器经历了几代金属探测的变革,从最初的信号模拟技术到连续波技术,再到今天的数字脉冲技术,金属探测器简单的磁场切割原理被引入多种技术成果中。无论是灵敏度、分辨率、探测精度还是在工作性能上都得到了质的飞跃,应用领域也随着产品质量的提高延伸到多个行业第2章 系统的总体设计2.1系统设计的理论依据金属探测器是采用线圈的电磁感应原理来探测金属的.根据电磁感应原理,当有金属靠近通电线圈平面附近时,将发生如下现象和效应[1]:图2-1 线圈介质条件的变化2.1.1线圈介质条件的变化当金属物接近通电线圈时,将使通电线圈周围的磁场发生变化,对于半径为R的单匝圆形电感线圈。当其中通过交变电流 时,线圈周围空间产生交变磁场,根据毕奥-萨伐尔定律可计算出线圈中心轴线上一点的磁感应强度B为: (2-1) 其中,磁导率,为相对磁导率,为真空磁导率。[2]对于紧密缠绕N匝的线圈,线圈中心轴线上一点的磁感应强度则为: (2-2)由公式(2-2)可知,当线圈有效探测范围内无金属物时,(非金属的相对磁导率),线圈中心磁感应强度B保持不变,当线圈有效探测范围内出现铁磁性金属物时,会变大,B随也会变大。2.1.2涡流效应根据电磁理论,我们知道,当金属物体被置于变化的磁场中时,金属导体内就会产生自行闭合的感应电流,这就是金属的涡流效应。涡流要产生附加的磁场,与外磁场方向相反,削弱外磁场的变化。据此,将一交流正弦信号接入绕在骨架上的空心线圈上,流过线圈的电流会在周围产生交变磁场,当将金属靠近线圈时,金属产生的祸流磁场的去磁作用会削弱线圈磁场的变化。金属的电导率越大,交变电流的频率越大,则涡电流强度越大,对原磁场的抑制作用越强。 通过以上分析可知,当有金属物靠近通电线圈平面附近时,无论是介质磁导率的变化,还是金属的涡流效应均能引起磁感应强度B的变化。对于非铁磁性的金属[包括抗磁体(如:金、银、铜、铅、锌等)和顺磁体(如锰、铬、钦等),较大,可以认为是导电不导磁的物质,主要产生涡流效应,磁效应可忽略不计;对于铁磁性金属(如:铁、钴、镍)很大,也较大,可认为是既可导电又导磁的物质,主要产生磁效应,同时又有涡流效应。本设计正是基于这样的理论,来寻找一种适合的传感器来感应线圈的磁场变化,并把磁场信号的变化转变成电信号的变化,从而实现单片机的控制。正是本着这样一个设计思路来构建系统的硬件电路。2.2 基于单片机的金属探测器的设计方案通过资料查阅可见数字金属探测器的设计是顺应时代发展,本次设计所要完成的任务是实现一个基于单片机的手持金属探测器。由四部分组成:高频振荡、信号放大、脉冲转换和信号的处理与报警,下面简单论述以下各个模块的功能。1)高频振荡这一部分是金属探测的基础,金属探测器的原理是:当金属物体置于变化的磁场当中时,金属内部就会产生涡流,而涡流所产生的磁场又会影响原磁场。高频振荡部分的任务首先就是产生变化的磁场,它往往由一LC振荡电路组成。其次,在遇见金属后由于金属内部涡流的存在,它的磁场会影响原有磁场,使原有振荡电路的振幅和周期都发生改变。这种改变经转换后送入单片机,单片机中有相应的程序对其进行分析判断。2)放大电路振荡电路所产生的正弦波信号的幅值是比较小的,因此需要放大才能进行再处理。3)脉冲转换电路这是本套设计方案所独有的,它是实现本次金属探测数字化的桥梁,单片机只能处理数字脉冲型号,因此振荡电路所产生的信号经放大不能直接送入单片机,这一部分只需要一个TTL门电路对放大电路输出的波形进行转换就行,简单但很重要。4)信号处理与报警这一部分是整个电路的大脑,所有的电路都是为它服务,这一部分也是整个探测器实现网络化或其他功能的桥梁。作为整个电路的大脑,它对整个电路所产生的信号做最终的处理,并根据处理的结果决定是否存在金属,是否要发出警报。这一部分处理能力的强弱影响这整个系统的性能。作为与外部进行沟通的桥梁,它可以将金属探测的信息发送给外围模块供他们进行进一步的处理,它同时也接收外围模块传送过来的控制信号,如对金属探测的精度或其他方面进行设置。5)MD—898K金属探测器图2-3为MD—898K金属探测器的原理框图,看上去在结构上和本次设计的金属探测器很相近,实际上它们存在本质的差别。首先,两者在设计思想上完全不同,MD—898K金属探测器是模拟信号处理的模拟金属探测器,而此次要实现的金属探测器信号的处理和报警都在数字单片机内完成。其次,在可拓展性方面MD—898K没有可拓展性而言,因为每一部分的单元电路紧密的联系在一起,即使可以扩展也要对整个电路进行从新设计,而且设计的难度相对很大,而本次设计,将频率信号转换为数字信号供数字单片机进行分析,单片机提供了很多I/O口可以很方便的和其他单片机进行通讯,加入串口通信模块后还可以直接和PC机进行通讯,借助于PC机强大存储和网络资源对数据进行再分析在处理,就可以完善金属探测的性能,并且借助于PC机的强大功能可以使探测的精度得到新的改善。图2-2 手持数字金属探测器原理框图图2-3 MD—898K金属探测器原理框图2.3系统结构整个探测系统以8位单片机AT89S52作为控制核心,其硬件电路分为两个部分,一部分为线圈振荡电路,包括:多谐振荡电路、放大电路和探测线圈;另一部分为控制电路。.图2-4 系统结构块图第3章 硬件电路设计3.1系统组成框图1)硬件控制电路包括两个部分,一部分线圈振荡电路,包括:多谐振荡电路、放大电路和探测线圈;另一部分控制电路包括:UGN3503型线性霍尔元件、可编程放大电路、峰值检波电路、模数转换器、AT89S52单片机、LED显示电路、声音报警电路及电源电路等。 在工作过程中,由555定时器构成的多谐振荡器产生一个频率为24KHz的脉冲信号,此脉冲信号经过缓冲和放大之后,形成频率稳定度高、功率较大的脉冲信号输入到探测线圈中,通电的线圈周围就会产生磁场,此时,固定在线圈L1中心的霍尔元件UGN3503U就会感应到线圈周围的磁场,并将磁场强度信号线性地转变成电压信号。在无金属的情况下,假设霍尔输出电压为u0,该电压信号u0很微弱,属mV级信号,u0经过放大电路放大,再通过峰值检波电路,得到相应的0V~5V的峰值输出电压U0,以满足ADC0809的量程,经A/D转换后,将U0的数字量输入到单片机储存起来。此后,以该电压信号作为基准电压,与A/D转换器采集到的电压信号进行比较判断。当探测线圈L1靠近金属物体时,由于电磁感应现象,会使探测电感值发生变化,从而使其周围的磁场发生变化,霍尔元件感应到该变化的磁场,并将其线性地转变成电压信号ux,该变化的电压经放大电路、峰值检波电路后,得到相应的0V-5V的峰值输出电压Ux,然后经A/D转换后,输入到CPU,由CPU完成Ux与基准电压U0的比较,二者比较‏׀ Ux—U0‏׀得到一个差值,此差值与预设的灵敏度△U再作比较。灵敏度由键盘控制电路中各键输入,显示电路部分则显示各键按下后的相应数值,当然,△U大小的设定决定着系统精度的高低。若|Ux-U0|>△U,就确定为探测到金属,CUP输出口P1.0输出信号驱动发光二极管发光报警,同时P1.6控制蜂鸣器发出声响,进行声音报警。 图3-1 系统组成框图2)电路原理图见附录3.2线圈振荡电路图3-2 线圈振荡电路原理图 工作过程中,由555定时器构成一个多谐振荡器,产生一频率为24KHz、占空比为2/3的脉冲信号。振荡器的频率计算公式为: (3-1)图示参数对应的频率为24KHz,选择24KHz的超长波频率是为了减弱土壤对电磁波的影响。从多谐振荡器输出的正脉冲信号经过电容C8输入到Q1的基极(Q1为β≥125的9013H),使其导通,经Q1放大之后,就形成了频率稳定度高、功率较大的脉冲信号输入到探测线圈L1中,在线圈内产生瞬间较强的电流,从而使线圈周围产生恒定的交变磁场。由于在脉冲信号作用下,Q1处于开关工作状态,而导通时间又非常短,所以非常省电。3.3数据采集电路图3-3 数据采集电路1. 线性霍尔传感器(linaer Hall-Eeffct Sensors)在电路设计中,选用了美国ALELGRO公司生产的UGN3503U线性霍尔传感器,来检测通电线圈Ll周围的磁场变化。UGN3503U线性霍尔传感器的主要功能是可将感应到的磁场强度信号线性地转变为电压信号。[3]在一块半导体薄片上两端通以电流I,并加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压, 这种现象就是霍尔效应。这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压UH。霍尔电压UH可用下式表示: UH=RHIB/d(V) (3-2)式中RH---霍尔常数 (m3cˉ¹,); I---电流 (A); B---磁感应强度 (T); d---霍尔元件的厚度 (m)令KH=RH/d(vAˉ¹wbˉ¹m²),则得到UH=KHIB(V) (3-3)由上式可知,霍尔电压的大小正比于控制电流I和磁感应强度B。KH称为霍尔元件的灵敏度,它与元件材料的性质与几何尺寸有关。因此当外加电压源电压一定时,通过的电流I为一恒值,此时输出电压只与加在霍尔元件上的磁场B的大小成正比,即:UH=KB (V) (3-4)此时K=KHI为常数。因此,任何引起磁场强度变化的物理量都将引起霍尔输出电压的变化。据此,将霍尔元件做成各种形式的探头,固定在工作系统的适当位置,用它去检测工作磁场,再根据霍尔输出电压的变化提取被检信息,这就是线性霍尔元件的基本物理依据和作用。本设计中采用的线性霍尔传感器UGN3503U就是将霍尔元件、高增益线性差分放大器和射极跟随器集成在同一半导体基片上,为用户提供了一个由外电压源驱动、使用方便的磁敏传感器。它的灵敏度典型值为13.5mV/mT,静态输出电压为2.5V,输出电阻为0.05KΩ,mini-SIP封撞。具有灵敏度高,线性度好;结构牢固,体积小,重量轻,耐震动,功耗小,寿命长,频率高(可达IMHz);输出噪声低等特点。用它作探头可测量,10ˉ6-10T的交变和恒定磁场。在测量磁场时,将元件的第一脚(面对标志面从左到右数)接电源(工作电压为5V),第二脚接地,第三脚接高输入阻抗(>10KΩ)电压表,通电后,将电路放入被测磁场中,因霍尔器件只对垂直于霍尔片表面的磁感应强度敏感,因而必须让磁力线垂直于电路表面,当没有磁场(B=0G)时,静态输出电压是电源电压的一半(即VCC/2),当外加磁场的南极靠近器件标志面时,会使输出电压高于静态输出电压;当外加磁场的北极靠近器件标志面时,会使输出电压低于静态输出电压,但仍然是正值。利用线性霍尔传感器UGN3503U的上述特性,将其接在数据采集电路的前端,并固定在探测线圈Ll的中心,即可感应线圈Ll的磁场变化,并将磁场的变化信号转化为电压信号的变化而被后级电路拾取和放大。[4]2.放大和峰值检波电路由于UGN35O3U线性霍尔元件采集到的电压信号是一个毫伏级的信号,信号十分微弱,所以,在对其进行处理前,首先要进行放大。在设计中,信号放大电路采用输入阻抗高、漂移较小、共模抑制比高的集成运算放大器LM324。LM324是四运放集成电路,它采用14脚双列直插塑料封装。它的内部包含四组形式完全相同的运算放大器,除电源共用,四组运放相互独立。UGN3503线性霍尔元件输出的微弱信号经电容耦合到前级运算放大器U2A的同相输入端,运算放大器 U2A把霍尔元件感应到的电压转换为对地电压。在电路设计中,运放LM324采用+5V单电源供电,对于不同强度的信号均可通过调节前级放大电路的反馈电位器Wl来改变其放大倍数。经前级运算放大器放大的信号经耦合电容C2输入到后级峰值检测电路中。采用阻容耦合的方法可以使前后级电路的静态工作点保持独立,隔离各级静态之间的相互影响,使得电路总温漂不会太大。[5]峰值检测电路由两级运算放大器组成,第一级运放U2B将输入信号的峰值传递到电容C6上,并保持下来。第二级运放U2C组成缓冲放大器,将输出与电容隔离开来。在设计中,为了获得优良的保持性能和传输性能,同样采用了输入阻抗高、响应速度较快、跟随精度较好的运算放大器LM324,这样可有效地利用LM324的资源,减少使用元器件的数量,降低了成本。当输入电压Vi2上升时,Vo2跟随上升,使二极管D4、D5导通,D3截止,运放U2B工作在深度负反馈状态,给电容C6充电,Vc上升。当输入电压Vi2下降时,Vo2跟随下降,D3导通,U2B也工作在深度负反馈状态,深负反馈保证了二极管D4、D5可靠截止,Vc值得以保持。当Vi2再次上升使Vo2上升并使D4、D5导通,D3截止,再次对电容C6充电(Vc高于前次充电时电压),Vi2下降时,D4、D5又截止,D3导通,Vc将峰值再次保持。输出Vo反映Vc的大小,通过峰值检波和后级缓冲放大电路,将采集到的微弱电压信号放大至0V-5V的直流电平,以满足A/D转换器ADC0809所要求的输入电压变换范围,然后通过A/D转换电路将检测到的峰值转化成数字量。[6]3.4 A/D转换电路由于采集到的信息是连续变化的模拟量,不能被单片机直接处理,所以,必须把这些模拟量转换成数字量后才能够输入到单片机中进行处理,这里选用了经济实用的ADC0809型A/D转换器来完成模数转换。ADC0809是8位逐次逼近型A/D转换器,片内有八路模拟开关,可对八路模拟电压量实现分时转换,转换速度为100μs(即10千次/秒)。当地址锁存允许信号ALE=1时,3位地址信号A、B、C送入地址锁存器,选择8路模拟量中的一路实现A/D变换。本设计中只使用通道NI0,所以,地址译码器ABC直接接地为000,采用线选法寻址。ADC0809片内有三态输出缓冲器,可直接与单片机的数据总线相连接,这里将它的数据输出口直接与单片机的数据总线P0口相连接,AT89S52的P0口作为数据总线,又作为低8位地址总线ADC0809的片内没有时钟,时钟信号必须由外部提供,这里利用AT89S52提供的地址锁存允许信号ALE经计数器74LS163构成的4分频器分频获得。ALE引脚的频率是单片机时钟频率的1/6,单片机时钟频率为12MHZ,则ALE引脚频率约为2MHZ,再经4分频后为500kHZ,所以ADC0809能可靠工作。ADC0809的模拟输入范围:单极性0~5V,设计中采用+5V单电源供电。如图3-4所示,放大后的电压信号送入ADC0809的模拟输入通道IN0进行A/D转换。将P2.7(地址总线的A15)作为片选信号,由AT89S52的写信号和P2.7控制ADC0809的地址锁存ALE和转换启动START,当ADC0809的START启动信号输入端为高电平时A/D开始转换,在时钟的控制下,一位一位地逼近,比较器一次次进行比较,转换结束时,送出转换结束信号EOC(低到高),并将8位数字量D7-D0锁存到输出缓存器。AT89S52的读信号端发出一个输出允许命令输入到ADC0809的ENABLE(即OE)端,ENABLE(OE)端呈高电位,用以打开三态输出锁存器,AT89S52从ADC0809读取相应电压数字量,然后存入数据缓冲器中。图3-4 A/D转换电路3.5系统控制单元采用AT89S52单片机。AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8K Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度,非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元。图3-5 最小系统电路它具有如下特点:40个引脚,8K Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,看门狗定时(WDT)电路,2个数据指针,3个16位可编程定时计数器,5个中断优先级2层中断嵌套中断,2个全双工串行通信口,片内时钟振荡器。此外,AT89S52设计和配置了振荡频率可为0HZ并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM、定时计数器、串行口及外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。其工作电压为5V,晶振频率采用12MHZ。3.6键盘控制电路键盘是一组按键的集合,它是最常用的单片机输入设备。操作人员可以通过键盘输入数据或命令,实现简单的人-机通信。按键是一种常开型按钮开关。常态时,按键的两个触点处于断开状态,按下键时他们才闭合。键盘控制电路如图3-6所示,K1键作为功能键设置灵敏度△U,灵敏度是可调的,K2和K3分别作为加1,减1键来调节灵敏度,K4是确定键,当K4键按下时,灵敏度值确定。图3-6 键盘控制电路3.7显示报警电路 AT89S52的串行口RXD和TXD为一全双工串行通信口,但在工作方式0下可作同步移位寄存器用,其数据由RXD(P3.0)端输出或输入;而同步移位时钟由TXD(P3.1)端串行输出,在同步时钟作用下,实现由串行到并行的数据通信。在不需要使用串行通信的场合,利用串行口加外围芯片74HC164就可构成一个或多个并行输入/输出口,用于显示器LED驱动。单片机中通常使用7段LED构成字型“8”,另外,还有一个小数点发光二极管,以显示数字、符号及小数点。当键盘控制部分各键按下时,LED显示相对应灵敏度数值,显示电路如图3-7。一旦发现金属出现,则被测物理量超限由单片机I/O口P1.0输出信号驱动发光二极管发光报警,P1.6触发无源蜂鸣器用声报警提醒检测人员注意,进行必要的定位搜身检查,报警电路如图3-8所示。图3-7 显示电路P1.6图3-8 报警电路3.8电源电路电路如图3-9所示,电源供电由9V电池和板内稳压电源组成。电路板内采用三端稳压集成电路块LM7805为板内元器件供电。LM7805三端正稳压器具有内部过流、热过载和输出晶体管安全区保护功能,可将9VDC的输入电压转换为+5V电压,最大输出电流0.5A,保证板内555定时器、UGN3503U、AT89S52、ADC0809等芯片和元件可靠地工作。图3-9电源电路第4章 系统软件设计4.1软件算法软件是系统的灵魂,整个系统的软件包括主程序、一个外部中断服务程序、数字滤波程序、比较判断子程序及发光报警等若干个子程序。软件采用模块化设计,使程序结构清晰,便于今后进一步扩展系统的功能。主程序初始化以后置位AT89S52的中断控制位EA,使CPU开放中断。然后通过检测RAM中的21H中的数值的值来判断是否采集基准电压,如果未采集过,则启动ADC0809对INO通道的模拟输入量进行A/D转换。[7]在电路设计中,ADC0809与AT89S52是采用中断方式连接的,所以系统的数据采集处理功能是在中断服务程序中完成的,从原理图看出,ADC0809的EOC端通过反相器接AT89S52的INT1端,作为中断申请。采用中断方式,可大大节省CPU的时间。[8]软件编程允许AT89S52响应外部中断1,且设置其响应方式为边沿触发。当A/D转换完毕后,AD0809的EOC端向AT89S52的送入一个中断申请信号,AT89S52接此信号后响应中断请求,调用中断服务子程序INT1,中断服务程序进行压栈,保护现场,读取来自0809数据输出口的8位数字量,并将数字量储存到单片机RAM中,然后启动ADC0809的下一次转换。经过数据软件滤波之后将其存放在单片机RAM21H中,作为基准电压。[9]经反复实验测得的灵敏度的值被存放在单片机RAM地址为20H的存储器中。在检测过程中,将A/D转换器采集到的电压信号经数据软件滤波后存入内部RAM以30H为首脂的数据存储器中,然后将此数据和基准电压进行比较,二者差值U存放在单片机RAM地址为22H的存储器中。而后再通过判据算法将此差值U与灵敏度进行比较,以确定是否报警。4.2主程序流程图图4-1主程序流程图4.3键盘控制程序设计1)键盘接受键盘是输入设备,用它来实现人机交互,让机器更好的按人的要求去工作。这里引入键盘的目的是,1进行金属探测精度的设置;2在进行数据通讯时进行控制。[11]由于键盘普遍存在抖动现象,如果抖动现象处理不好,会发生意想不到的结果。为了防止抖动,在程序设计中采用了,一次键位判断,两次键位检测的方法,每一步骤间隔5ms,每次键位确定需要15ms,在检测与接受过程中每一步骤出现错误都将从新开始验证,因此保证了对用户输入的无误接受。[12]2)键盘处理模块键盘处理模块在判断是哪个键按下后,就立即引发相关的操作来满足用户的需求。同时键盘处理模块也展现出了系统提供给用户的所有功能。[13]程序流程图如图3-2所示图4-2键盘控制程序图4.4数字滤波程序设计金属探测器的噪声抑制能力是金属探测器的主要设计指标。由于在采集电压量时经常会碰到各种瞬时干扰,而采用硬件滤波存在硬件电路复杂等诸多弊端,因此本设计中采用算术平均滤波法,即在一次电压量的采集中,在很短的时间内对它进行6次采集,将它转换为数字量后求和,分析出6次输入中的最大值和最小值,然后减去最大值和最小值,除以4得到平均值的方法,完成一次数据采集的软件滤波。用软件代替硬件,从而省去了复杂的硬件,而且能够取得好而精确的效果。[15]在一个采样周期内,对信号X的N次测量值进行算术平均,作为时刻K的输出X(k),即式 (4-1)其中N为采样次数,Xi为第i次的采样值。显然N越大,信号平滑度越高,灵敏度就会降低,但是本设计中需要较高的灵敏度,所以N取值不易过大,这里我选择了N=6,选择取6个数进行计算的原因,就是因为在汇编中做计算是非常麻烦的,取6个数,减去最大值和最小值后,取平均值是除4,计算机的内部计算都是二进制,而二进制每除一个2,实际上是向右移一次。[16]所以为了计算方便,我选择取6个数,最后在算除法的时候,只需要用单片机自带的右移位命令移2次就行了。程序框图如下: 图4-3数字滤波程序流程图结 论本设计首先介绍了探测金属的理论依据,当有金属靠近通电线圈平面附近时将发生线圈介质条件的变化和涡流效应两个现象,根据电磁感应原理来设计金属探测器。硬件电路的设计分为两个部分,一部分为线圈振荡电路,包括:多谐振荡电路、放大电路和探测线圈;另一部分为控制电路,包括:线性霍尔元件、前置放大电路、峰值检波电路ADC0809模数转换器、AT89S52单片机、LED显示电路、声音报警电路及电源电路,通过这些电路将磁场强度信号变为电压信号,再进行电压信号的拾取,放大等。软件设计中,从系统的实用性、可靠性及方便灵活等几个方面出发,使程序满足设计的功能要求。整个系统的软件包括主程序、一个外部中断服务程序、数字滤波程序、比较判断子程序及发光报警等若干个子程序,采用模块化设计。使程序结构清晰,便于今后进一步扩展系统的功能。参考文献[1]范丽珍,李树华.基于单片机的智能型金属探测器设计[J].内蒙古大学学报自然科学版,2006.[2]刘慧娟,张奕黄.一种数字金属探测器的设计[J].北京交通大学仪器仪表学报,2004.8.[3]张学勇,赵群,李义宝,唐震.一种金属探测器的设计[J].安徽建筑工业学院学报,2007.6.[4]司德平.漫谈金属探测器[J].物理通报,2006.4.[5]李金平,沈明山,姜余祥.电子系统设计[M].北京:电子工业出版社,2007.8.
展开阅读全文
  麦档网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:【精品文档】66大学本科毕业论文自动化专业毕业设计:智能金属探测器设计(完整版)
链接地址:https://www.maidoc.com/p-15769988.html

当前资源信息

从****越

编号: 20191126200639135463

类型: 共享资源

格式: DOCX

大小: 452.91KB

上传时间: 2019-11-27

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2018-2020 maidoc.com版权所有  文库上传用户QQ群:3303921 

麦档网为“文档C2C模式”,即用户上传的文档所得金币直接给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的金币归上传人(含作者)所有。
备案号:蜀ICP备17040478号-3  
川公网安备:51019002001290号 

本站提供办公文档学习资料考试资料文档下载


收起
展开