• / 7
  • 下载费用:10 金币  

北京大学基于表面工程实现了厘米级尺寸的钙钛矿单晶薄膜的生长; 邓玉豪杨振乾马仁敏

关 键 词:
北京大学基于表面工程实现了厘米级尺寸的钙钛矿单晶薄膜的生长; 邓玉豪,杨振乾,马仁敏 北京大学 基于 表面工程 实现 厘米 尺寸 钙钛矿单晶 薄膜 生长 邓玉豪 杨振乾 马仁敏
资源描述:
Dengetal. Nano Convergence (2020) 7:25 https://doi.org/10.1186/s40580-020-00236-5 FULL PAPER Growth ofcentimeter-scale perovskite single-crystalline thin film viasurface engineering YuHao Deng1,2, ZhenQian Yang1,2 and RenMin Ma1,2* Abstract Modern electronic and photonic devices rely on singlecrystalline thin film semiconductors for high performance and reproducibility. The emerging halide perovskites have extraordinary electronic and photonic properties and can be synthesized via low cost solutionbased methods. They have been used in a variety of devices with performance approaching or over the devices based on conventional materials. However, their solution based growth method is intrinsically challenge to grow large scale singlecrystalline thin film due to the random nucleation and isotropous growth of the crystal. Here, we report the growth of centimeterscale perovskite singlecrystalline thin films by con trolling the nucleation density and growth rate of the crystal under a spatially confined growth condition. The hydro phobic treatment on substrates inhibits nucleation and accelerates the growth of singlecrystalline thin film, provid ing enough space for initial nucleus growing up quickly without touching each other. Singlecrystalline perovskite thinfilm with an aspect ratio of 1000 (1 cm in side length, 10 m in thickness) has been successfully grown. The low trap density and the high mobility of the asgrown thin film show a high crystallinity. The photodetector based on the perovskite thin film has achieved a gain 104, benefitting from the short transit time of the carries due to the high mobility and thin thickness of the active layer. Our work opens up a new route to grow large scale perovskite single crystalline thin films, providing a platform to develop high performance devices. Keywords: Perovskite, Singlecrystalline thin film, Hydrophobic, Photodetector, Gain The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articles Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articles Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. 1 Introduction Single-crystalline thin film (SC-TF) materials provide state-of-the-art performance in modern electronic and photonic devices 16. The growth of conventional SC- TFs requires high vacuum and high temperature condi- tions. Recently, halide perovskites that can be grown by solution-based methods are emerging as a new genera- tion of semiconductor materials with high device perfor- mance. To date, they have been used in various directions including solar cells 718, photodetectors 1928, light emitting diodes and lasers 2934, laser cooling devices 35, 36, and high-energy radiation detection 3739. However, solution-based growth methods are intrinsi- cally challenged when it comes to growth of macroscale SC-TF, owing to the random nucleation and isotropous growth of the crystal. To date, large area high perfor- mance perovskite devices are based on polycrystalline thin films 1119, 2228. On the other hand, liquid growth strategies including cooling crystallization 2, 40, 41, anti-solvent diffusion assisted crystallization 42, 43, and inverse temperature crystallization 28, 44, 45 have been developed to grow macroscale single-crystalline halide perovskites. However, the aspect ratios of these macroscale single crystals had been about unity depend- ing on the isotropous growth rate in solution. Therefore, methods based on space-confine 4, 4650, mechanical Open Access *Correspondence: 2 Frontiers Science Center for Nanooptoelectronics MA: Methylamine; MABr: Bromide meth ylamine; PbBr2: Lead bromide; PL: Photoluminescence; XRD: Xray dif fraction; FWHM: Full width half maximum; ITO: Indium Tin Oxide; DMF: N,Ndimethylformamide. Author contributions YHD and ZQY performed the experiment. RMM supervised the project. All authors read and approved the final manuscript. Funding This work is supported by NSFC under project Nos. 11774014, 91950115, 11574012 and 61521004, Beijing Natural Science Foundation (Z180011) and the National Key R&D Programme of China (2018YFA0704401). Data availability All data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request. Competing interests The authors declare no competing interests. Author details 1 State Key Lab for Mesoscopic Physics and School of Physics, Peking Uni versity, Beijing, China. 2 Frontiers Science Center for Nanooptoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing, China. Received: 12 June 2020 Accepted: 4 July 2020 References 1. J. Zhao, A. Wang, M.A. Green, F. Ferrazza, Appl. Phys. Lett. 73, 19911993 (1998) 2. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967970 (2015) 3. Y. Bi, E.M. Hutter, Y. Fang, Q. Dong, J. Huang, T.J. Savenije, J. Phys. Chem. Lett. 7, 923928 (2016) 4. Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, S. Liu, Adv. Mater. 28, 92049209 (2016) Page 7 of 7Dengetal. Nano Convergence (2020) 7:25 5. C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng, X. Xiao, L. Li, J. Huang, Adv. Mater. 29, 1703209 (2017) 6. Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, J. Huang, Nat. Commun. 2017, 8 (1890) 7. M.A. Green, A. HoBaillie, H.J. Snaith, Nat. Photonics 8, 506514 (2014) 8. C. Zuo, H.J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Adv. Sci. 3, 1500324 (2016) 9. J.P. Correabaena, A. Abate, M. Saliba, W. Tress, T.J. Jacobsson, M. Grtzel, A. Hagfeldt, Energy Environ. Sci. 10, 710727 (2017) 10. Best ResearchCell Efficiencies, National Renewable Energy Laboratory. https ://www.nrel.gov/pv/celleffic iency .html. Accessed 4 2020 11. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 60506051 (2009) 12. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. HumphryBaker, J.H. Yum, J.E. Moser, M.N. Grtzel, G. Park, Sci. Rep. 2, 591 (2012) 13. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643647 (2012) 14. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897903 (2014) 15. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 12341237 (2015) 16. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 6, 7747 (2015) 17. W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Cro chet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, Science 347, 522525 (2015) 18. D. Bi, C. Yi, J. Luo, J.D. Dcoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hag feldt, M. Grtzel, Nat. Energy. 1, 16142 (2016) 19. R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. Zeng, J. Huang, Adv. Mater. 27, 19121918 (2015) 20. M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang, D. Wei, Appl. Phys. Lett. 109, 233303 (2016) 21. F.P.G.D. Arquer, A. Armin, P. Meredith, E.H. Sargent, Nat. Rev. Mater. 2, 16100 (2017) 22. X. Li, D. Bi, C. Yi, J.D. Dcoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grtzel, Science 353, 5862 (2016) 23. Q. Lin, A. Armin, D.M. Lyons, P.L. Burn, P. Meredith, Adv. Mater. 27, 20602064 (2015) 24. L. Shen, Y. Fang, D. Wang, Y. Bai, Y. Deng, M. Wang, Y. Lu, J. Huang, Adv. Mater. 28, 1079410800 (2016) 25. H. Lu, W. Tian, F. Cao, Y. Ma, B. Gu, L. Li, Adv. Funct. Mater. 26, 12961302 (2016) 26. E. Zheng, B. Yuh, G.A. Tosado, Q. Yu, J. Mater. Chem. C. 5, 37963806 (2017) 27. M.I. Saidaminov, M.A. Haque, M. Savoie, A.L. Abdelhady, N. Cho, I. Dursun, U. Buttner, E. Alarousu, T. Wu, O.M. Bakr, Adv. Mater. 28, 81448149 (2016) 28. M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent, O.M. Bakr, Nat. Commun. 6, 8724 (2015) 29. S.D. Stranks, H.J. Snaith, Nat. Nanotechnol. 10, 391402 (2015) 30. B.R. Sutherland, E.H. Sargent, Nat. Photonics 10, 295302 (2016) 31. S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhais alkar, Adv. Mater. 28, 68046834 (2016) 32. X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu et al., Adv. Sci. 3(11), 1600137 (2016) 33. Q. Zhang, R. Su, X. Liu, J. Xing, T. Sum, Q. Xiong, Adv. Funct. Mater. 26, 62386245 (2016) 34. Q. Zhang, S. Ha, X. Liu, T. Sum, Q. Xiong, Nano Lett. 14, 59956001 (2014) 35. J. Zhang, Q. Zhang, X. Wang, L.C. Kwek, Q. Xiong, Nat. Photonics 10, 600605 (2016) 36. S.T. Ha, C. Shen, J. Zhang, Q. Xiong, Nat. Photonics 10, 115121 (2016) 37. C. Stoumpos, C. Malliakas, J. Peters, Z. Liu, M. Sebastian, J. Im, T. Chasapis, A. Wibowo, D. Chung, A. Freeman et al., Cryst. Growth Des. 13, 27222727 (2013) 38. S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G. Matt, H. Azimi, C. Brabec, J. Stangl, M. Kovalenko et al., Nat. Photonics 9, 444449 (2015) 39. O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, M. Kovalenko, NPG Asia Mater. 9(4), e373 (2017) 40. Z. Lian, Q. Yan, Q. Lv, Y. Wang, L. Liu, L. Zhang, S. Pan, Q. Li, L. Wang, J. Sun, Sci. Rep. 5, 16563 (2015) 41. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, X. Tao, Cryst. Eng. Comm. 17, 665670 (2015) 42. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoog land, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347, 519522 (2015) 43. Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J.M. Luther, M.C. Beard, Nat. Com mun. 6, 7961 (2015) 44. T. Zhang, M. Yang, E.E. Benson, Z. Li, J.V.D. Lagemaat, J.M. Luther, Y. Yan, K. Zhu, Y. Zhao, Chem. Commun. 51, 78207823 (2015) 45. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, O.M. Bakr, J. Phys. Chem. Lett. 6, 37813786 (2015) 46. J. Gao, Q. Liang, G. Li, T. Ji, Y. Liu, M. Fan, Y. Hao, S. Liu, Y. Wu, Y. Cui, J. Mater. Chem. C 7, 83578363 (2019) 47. H.S. Rao, W.G. Li, B.X. Chen, D.B. Kuang, C.Y. Su, Adv. Mater. 29, 1602639 (2017) 48. H.S. Rao, B.X. Chen, X.D. Wang, D.B. Kuang, C.Y. Su, Chem. Commun. 53, 51635166 (2017) 49. Y. Chen, Q. Ge, Y. Shi, J. Liu, D. Xue, J. Ma, J. Ding, H. Yan, J. Hu, L. Wan, J. Am. Chem. Soc. 138, 1619616199 (2016) 50. Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S. Liu, Adv. Opt. Mater. 4, 18291837 (2016) 51. A. Zhumekenov, V. Burlakov, M. Saidaminov, A. Alofi, M. Hague, B. Turedi, B. Davaasuren, I. Dursun, N. Cho, A. ElZohry et al., ACS Energy Lett. 2(8), 17821788 (2017) 52. W. Peng, L. Wan, B. Murali, K. Ho, A. Bera, N. Cho, C. Kang, V. Burlakov, J. Pan, L. Sinatra et al., Adv. Mater. 28, 33833390 (2016) 53. Z. Yang, Q. Xu, X. Wang, J. Lu, H. Wang, F. Li, L. Zhang, G. Hu, C. Pan, Adv. Mater. 30, 1802110 (2018) 54. Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen, S. Yang, J. Khurgin, N. Fang, X. Zhang, R. Ma, Adv. Mater. 30, 1704333 (2018) 55. W. Xu, Z. Lan, B. Peng, R. Wen, X. Ma, J. Chem. Phys. 142(5), 054701 (2015) 56. K. Varanasi, M. Hsu, N. Bhate, W. Yang, T. Deng, Appl. Phys. Lett. 95(9), 094101 (2009) 57. R.A. Sigsbee, Nucleation, in Nucleation, ed. by A.C. Zettlemoyer (Marcel Dekker, New York, 1969) 58. D. Anderson, G. McFadden, A. Wheeler, Annu. Rev. Fluid Mech. 30, 139165 (1998) 59. G. Eperon, V. Burlakov, P. Docampo, A. Goriely, H. Snaith, Adv. Funct. Mater. 24, 151157 (2014) 60. A. Zhumekenov, V. Burlakov, M. Saidaminov, A. Alofi, M. Hague, B. Turedi, B. Davaasuren, I. Dursun, N. Cho, A. ElZohry et al., ACS Energy Lett. 2, 17821788 (2017) 61. M.C. Teich, B. Saleh, Fundamentals of photonics (Wiley, Canada, 1991) 62. J.M. Liu, Photonic devices (Cambridge University Press, New York, 2009) Publishers Note Springer Nature remains neutral with regard to jurisdictional claims in pub lished maps and institutional affiliations.
展开阅读全文
  麦档网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:北京大学基于表面工程实现了厘米级尺寸的钙钛矿单晶薄膜的生长; 邓玉豪杨振乾马仁敏
链接地址:https://www.maidoc.com/p-16830685.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2018-2020 maidoc.com版权所有  文库上传用户QQ群:3303921 

麦档网为“文档C2C模式”,即用户上传的文档所得金币直接给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的金币归上传人(含作者)所有。
备案号:蜀ICP备17040478号-3  
川公网安备:51019002001290号 


收起
展开